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Polarization of the magnetized scalar and spinor vacua 

N S Witte 
School of Physics, University of Melbourne, Paricville, Victoria 3052, Australia 

Received 27 February 1990 

Abstract. The vacuum polarization tensor of the magnetized boson system, taken 
within the random phase or one-loop approximation, is presented in three represen- 
tation forms: the Landau, the proper-time, and the dispersion sum representation. 
Detailed numerical investigations into many aspects of the physical properties of 
both the bosonic and fermionic vacua are presented on the basis of these analytical 
results. From the static and uniform limit of the polarization scalars it is found that 
the boson vacuum state enhances small electrostatic fields parallel to  the external 
field as well in the transverse direction contrary to the screening behaviour of the 
fermion vacuum, and all the scalars have a weak logarithmic growth in strong fields. 
Also contrary to the fermionic behaviour, for wavevectors parallel to the field, the 
longitudinal dielectric function does not exhibit any singularities at the pair pro- 
duction thresholds. Furthermore the ‘massive longitudinal photon’ mode found for 
the magnetized fermion vacuum does not exist in the bosonic equivalent. Like the 
spin-3 case the dispersion solutions show that the purely transverse ‘photon’ mode 
(3) acquires mass and is channelled along the field lines, thus manifesting the mixed 
state of a photon and a boson-antiboson quasibound state. However, the other mode 
(2), which is a combined longitudinal-transverse mode does not deviate significantly 
from the free-space dispersion law and its inverse lifetime has no singularities a t  the 
pair thresholds. 

1. Introduction 

Interest in the nature of the magnetized vacuum has been aroused by some studies 
of photon propagation in a strong external magnetic field that have demonstrated 
the rather unique behaviour in that the group velocity becomes aligned along the 
local field [SH72,SH75,SH84], that  is to  say that the photon no longer propagates 
rectilinearly. The explanation of these dispersion solutions in terms of not a pure 
photon but of a quasiparticle which acquires mass through the mixing with bound 
states of positronium has astrophysical implications [SH82, SH84, SH85, SH861. The 
effect of this is to  inhibit pair creation processes in a curved magnetic field, and to  put 
in doubt the key assumption in the electron-positron pulsar models that are currently 
favoured. This work seeks to  repeat many of the earlier fermion calculations except 
with zero-spin charged bosons, that  is with a different vacuum state, and to  find 
exact numerical solution modes for photon propagation and lifetimes in both cases. 
In addition it is intended to  physically describe the bosonic vacuum because this needs 
to  be incorporated into any relativistic description of the magnetized zero-spin pair 
plasma. 

The first detailed exposition of the structure of the tensor and the eigenmodes that  
propagate in the vacuum in the presence of a constant but otherwise arbitrary external 
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electromagnetic field appeared in Batalin and Shabad [BT71] which not only treated 
the external field exactly, but was valid for all orders in the radiation field. I t  should 
also be noted that in this work no approximations were made with respect to  the 
photon’s momentum, i.e. it was not assumed to  lie on the light cone, or approximate 
mass shell. In this fundamental paper an explicit calculation of the tensor was made in 
the one-loop approximation using the Schwinger electron propagator in such a general 
external electromagnetic field, although no specific solutions were investigated at  this 
point. The original paper [BT71] was followed by another [SH75] which treated the 
special case of a pure magnetic field, and in this a number of new ideas were present. 
Firstly the analyticity of the three polarization scalars was discussed in terms of the 
complex photon momentum scalars and the Landau sum, or spectral representation 
was developed from the proper-time one. This was the first paper to  treat the photon 
dispersion solutions in full generality. Furthermore the qualitative aspects of all the 
possible solutions were sketched out and in particular analytical solutions were devel- 
oped in the region of the pair production thresholds, where it was first noted that the 
group velocity of the photons aligns itself with the magnetic field direction. Part  of 
this phenonemon is that IC;, - w 2  tended to  asymptote approximately towards the pair 

production thresholds, - { Jm2c4 + 2ehc2Bn + Jm2c4 + 2ehc2Bn’} , the squares of 
the energy of the Landau levels of the emergent electron and positron, and this was 
attributed to  being the manifestation of the mixing of photons and quasibound states 
of electron-positron pairs, positronium. 

A complementary development to that of Shabad e t  a1 was made by Bakshi e2 a1 
who developed a form for the polarization tensor in the uniform magnetic field based on 
three scalars, also without assuming the photons lay on the light cone, i.e. as in Shabad 
et al. In the first paper [CV74] they reported numerical investigations of a particular 
solution to  dispersion relations. They found a solution of the longitudinal mode for the 
particular case when the perpendicular wave number was  zero (which coincides with a 
transverse mode in this case) just above the first pair creation threshold, i.e w - 2mc2 
with I C , ,  = 0 also, but only for magnetic field strengths B > 429B,(B, is defined later). 
This frequency solution increased monotonically with field strength and they also 
calculated its lifetime. Following on from this they investigated the static and uniform 
limits of the three vacuum scalars [BK75], which they numerically computed for a 
large range of field strengths. They found electric field enhancement in the transverse 
direction and one scalar grew asymptotically as B in large fields. The third paper 
[BK76] has a derivation of the polarization tensor based on the spectral representation 
of the electron Green function and discusses three renormalization schemes that can 
be used with the Landau sum representation of the scalars. The only restriction of the 
results is, as with the earlier work, is that all considerations are confined to a vanishing 
perpendicular photon wavenumber. It also contained the most extensive numerical 
work to date on the magnetized vacuum, and the results of [CV74] were confirmed. 
They dubbed this a ‘massive longitudinal photon’ and interpreted it as being the 
antiparallel spin s = 0 quasibound electron-positron pair which forms because of the 
electric field enhancement in the magnetized vacuum. Other authors have also made 
calculations of the vacuum polarization tensor, such as [BI75, MR76, MR77, SV851. 

The plan of the work presented in this paper is the following. In the remainder of 
this section a number of key conventions and definitions are made, along with the perti- 
nent general properties of the vacuum polarization tensor. In section 2 the proper-time 
representation of the boson tensor is found from the earlier random phase calculation 
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in [WT88], while in section 3 the Landau sum or spectral representation is derived 
from this and its convergence properties discussed, and in section 4 a dispersion-sum 
representation is found for the vacuum tensor. In section 5 the anti-Hermitian parts of 
the tensor are presented as well as the inverse lifetimes of the propagating modes. The  
physical description of the vacua begins with the discussion of the static and uniform 
limits of the scalars both analytically and numerically in section 6-here one can find 
a discussion of the screened electrostatic potential of a test charge. This is generalized 
in section 7 ,  which considers the behaviour of all the vacuum scalars with respect to  
the photon momenta on the basis of analytical and numerical calculations. Finally in 
section 8 numerical solutions are presented for the non-trivial dispersion solutions to  
all the photon modes and are discussed with some analytical approximations. 

From the work of Batalin and Shabad [BT71], it has been clear that the vacuum 
polarization tensor in the presence of an uniform and static magnetic field can be 
characterized quite generally, that  is to say non-perturbatively, by three scalars. Fur- 
thermore the polarization tensor is diagonal in the orthonormal basis utm), m = l ,  2 , 3  
(see [WT88] for more details on the definitions adopted here) defined by 

( l . l a )  

( l . l b )  

(1.lc) 

where the symbolic notation is 

(F*mFn)py = l$alF:la2.. . c m Q m + l F  Q m t 2 . .  . 
fffn+l F Q m + n v  

with F Q p  E - Ap,a  the electromagnetic tensor of the external field and its dual 
tensor, F;I*“ = $ E , ~ ~ ~ F ~ ~ .  The 4-momentum of the photon is denoted by 12. The 
three non-zero scalars are then the P , S  and 7 that were defined for the magnetized 
plasma in [WT88] and in summary one can write the polarization tensor as 

II ,U = P u p p  + s a p u p  + ‘Tap43)  . (1.2) 
These scalars are in turn functions of only three variables: the magnetic field strength 
parameter P = 2B/B, = 2b2 where B, = m2c2 / (2eh)  in SI units, and the parallel 
and perpendicular ‘squared photon energies’ Y = qf, - R 2  and z = qi = p z  (these two 
quantities should not be confused) respectively in all that follows the dimensionless 
units R = hw/mc2  and q = hk/mc or p = JL h/eBk  are used with z = $ p i ) ) .  The 
wavevector q is confined to the 2-2 plane with a component perpendicular q I  and 
a component parallel q,,  to the external magnetic field, which is directed along the 
positive z axis. These conclusions are also independent of the details of the particular 
dynamics of the theory or the order to  which a perturbation calculation can be made. 

The polarization eigenvectors of the eigenmodes to the dispersion equat,ions are 
then 

A; = ( S  - P ) ( 7  - P ) u p  
A; = - (P - S)(7 - S)a(,2) 

A; = (P - 7 ) ( S  - 7 ) a f )  

( 1 . 3 ~ )  

(1.3b) 

( 1 . 3 ~ )  
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The notation for the modes 1 ,  2,  3 concurs with that adopted by [SH75]. All the 
eigenmodes are linearly polarized modes with mode 3 being fully transversal. If qI  # 0 
one can choose a Lorentz frame so that qll = 0 and then the electric field 3-vector of 
mode 1 is longitudinal, e(') 1 1  q, while that of mode 2 is transverse. If the converse is 
true then the polarization vector of mode 1 becomes transverse, being perpendicular 
to  the plane defined by the wavevector and the external field, while that  of mode 2 
becomes longitudinal. The unnormalized electric and magnetic polarization 3-vectors 
corresponding to  the a( ' ) ,  Q ( ~ )  and a ( 3 )  are: 

However it is sometimes convenient to  use the scalars originally defined by Bakshi 
e t  a1 and which are related to  the other set by 

P = ( Y + Z ) P  
S =  Y Q + z P  
I =  y P + z R  

In this way the spatial part of the vacuum polarization tensor is 

With this set of scalars the dispersion relation decouples into the following set of three 
simple equations: 

l + P = O  Mode 1 
Y ( 1 + Q ) + 2 ( 1 +  P )  = 0 Mode 2 
Y ( 1  + P )  + 2 ( l +  R )  = 0 Mode 3 

( 1 . 7 ~ )  
(1.7b) 
( 1 . 7 ~ )  

and the most general solution can only relate Y to 2 via the relation Y = y M ( 2 )  for 
modes M = 1, 2,  3. 

In Shabad [SH75] one has the first detailed description of the analyticity of the 
fermion vacuum scalars, calculated to  the one-loop level, as functions in the complex 
y and 2 planes. The scalars are entire functions of the complex variable 2 .  How- 
ever their analyticity with respect to y is quite different, and each scalar has branch 
points on the negative real Y axis corresponding to  pair creation thresholds (which 
particular thresholds they are depends on the scalar). The branch cut runs from the 
highest threshold point to  negative infinity. Thus, a t  this level of approximation for 
the fermion problem it was found in this work that the scalar functions possess two 
Riemann sheets in the cut complex Y plane which arise out of the characteristic in- 
verse square-root dependence on y of the singular factors in the scalars. This feature 
is explicitly demonstrated in appendix C of [WT89]. 
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2. Proper-time representation 

The spatial components of the polarization tensor are given by equations (5.23) in 
[WT88], which are: 

(2.1~1) 

(2.lb) 

(2 . ld)  

( 2 . W  

NT denotes the formally divergent sum 

The first step in calculating the renormalized boson vacuum tensor is the isolation of 
the ' l ' o r  vacuum contributions to the momentum integrals, that is to say the integrals 
M,k,n,,Ik,nl, and J,",,, defined by equations (5.22) in (WT881 as they appear in the 
polarization tensor components above. The vacuum parts take the following form 

(2.2c) 
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Here n )  = [ I  + PI,' + P(n + i)] ' I 2  and later use is made of the relation E ,  E [' + P(n + $11 ' I 2 .  These integrals are symmetric or antisymmetric with respect to 
exchange in the Landau level indices n and n' according to whether k is even or odd 
respectively. They are related to each other by = R J,k,n, - I:,,, . They are finite 
for k = 0 , l  in the case of M and I ,  and for k = 0 , 1 , 2  in the case of J .  

The definition of the e:,,, and O i l , ,  functions are: 

where 

( 2 . 3 ~ )  

(2.3b) 

with z $ p i  (distinct from 2 = pz) and the L:'-" are the standard associated La- 
guerre polynomials as given in [GD80]. Appendix A of [WT88] has a list of properties 
of the 0 functions, From the symmetry of the M integral and the 0 functions under 
exchange of R and R' is follows tha t  

00 

n,n'=O 

00 

( 2 . 4 ~ )  

(2.4b) 

so tha t  II,, = IIZ3 = 0. Thus  this vacuum tensor conforms to the invariance principles 
outlined above. The  momentum integrals required for the non-zero elements are those 
which are finite, but the double infinite sums over the Landau level numbers n and n' 
are formally divergent. 

All the momentum integrals can be evaluated explicitly directly from their defini- 
tions but it is more useful to cast them in a different form which allows one to  easily 
switch from one representation to another. Turning to  the simplest example of 
it is shown in [WT89] that 

+ 1 / 2  

I,,,, 0 = 2 / dx 1" dt 
- 1 1 2  

+ I 1 2  03 

I,!,,,, = 2ql, LlI2 dx x 1 dt 

where 

~ b ( t ,  z) 1 + q i (  f - x2) + + n' + 1) + p(n' - n)x , 

( 2 . 5 ~ )  

( 2 . 5 b )  

Considering the real parts of M and J next, one should note the presence of R in 
the denominator and it might seem tha t  an equivalent result would not exist. However 
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such a result does exist, despite appearances, as it is clear that  the integral can only 
be a function of q , ,  and R combined in the relativistic scalar Y and not separately. As 
described in [WT89] one finds the following results: 

t 1 / 2  
Re(M,O,,,)(y) = -2 / + l i 2  dx im dt e-tQb = -2 1112 d x  Qbl 

Re(M;, , , ) (y)  = -2q , ,  / 
( 2 . 6 ~ )  

-112 

t 1 / 2  t 1 / 2  
d z  x 1" dt e-'Qb = -2q (2 .6b)  

-112 

where 

It is these forms for the integrals tha t  will be of greatest use. 
The  z integrals in equations (2.6) are evaluated in appendix C of [WT89] and these 

illustrate explicitly the nature of the singularities a t  the pair production thresholds. 
As first described in [SH75] for the fermion integrals, the integrals of both cases are 
continuous across Y = -{E,/ where V, = 0, because y + f ; , + C :  -+ + 2 E , , f , ,  
but diverge with an inverse square-root singularity on the upper side of the y = 
-{&,/ +E,}' pair threshold, where 

Here the difference is that y + &;, + fi -, -2&,,,E,, even though 2>b = 0 as before. 
On the other side of this singularity all the integrals have a finite limit because I Y  + 
f:, + 8: - -, +2E,,E,. This particular and characteristic form was pointed 
out in the above reference to be due to the semi-discrete and continuously degenerate 
eigenspectrum of the free magnetic eigenstates, which form the basis of the one-loop 
approximations. 

With the integrals in the above form of equations ( 2 . 5 ) ,  ( 2 . 6 )  the double infinite 
Landau sum over n and n' appearing in equations ( 2 . 1 )  can be done exactly. The  real 
parts of the integrals have a dependence on n and n' in the form of a factor 

exp{-s [ n ( 1 / 2  - z) + n ' ( 1 / 2  + x)]} 

with s E Pt and using the technique expounded in appendix B of [WT89] the two 
basic double sums required are: 
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(2.8a) 

e-*/2cosh(sx) --e-* 
1-e-* 

x exp { 22 ( 
(2.8b) 

All other sums can be found from these two by differentiation with respect to  x.  An 
important single sum is 

00 

( 2 . 8 ~ )  

The essence of this technique reduces to  a recognition that the single charged-particle 
quantum problem in a uniform magnetic field is simply a product of two one- 
dimensional simple harmonic oscillator algebras and the sums are matrix elements 
in this algebra. 

Assembling these results into the expressions for the polarization tensor, equations 
(2.1), rewriting the NT terms in the form 

NT = dss - ' ( l  - e-*)-le-*(1/2+@-') J 
so that they can be absorbed into the double sum, and integrating by parts with respect 
to  z where necessary one arrives a t  the unregularized elements. The unregularized 
elements appear in precisely the correct form, given in equation (1.6), and one can 
make the identification of the three bare scalar invariants Q b ,  pb and Rb as: 

Q b  = E / dx z2 / ds  cosech( fs)e-" (2.9a) 2.n 
sinh(sx) - t q  

sinh2( fs)  e 
pb = ~ / d x x / d s  4.n (2.9b) 

1 + cosh2( fs) - 2 cosh( 4s) cosh(sz) -~' 
Qb = -2 / d x  I d s  e ( 2 . 9 ~ )  

8.n sinh3( is) 

where 

I cosh( 4s) - cosh(sx) 
s sinh( is) 

cp = 1 + Y (  a - 2)  + 2 
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The renormalization procedure employed here involves the subtraction of the zero- 
field limit of the unregularized scalars from the non-zero field originals and the addi- 
tion of the exact renormalized zero-field tensor. Applying this to an arbitrary scalar 
S(ql RI P )  leads to  

where the regularized quantity is distinguished from the unregularized by the bar. 
This is the most direct subtraction process, but is only suited to  those cases where the 
form of the unregularized finite field scalar is similar to  the zero-field limit in order 
to simply effect the subtraction. When this is not the case intermediate steps are 
required in which the q components and R are set to  zero one at  a time in some order. 

In the zero-field limit p reduces to  the isotropic form p0 = 1 + (U + z)( a - z2) 
and one arrives a t  

(2.11u) 

(2.11b) 

To complete the renormalization the regularized zero-field tensor is required and this 
has been calculated before [KW85] (their result should be corrected). This is char- 
acterized by one scalar and can be recast into a form appropriate to equations (2.11) 
as 

+ 1 / 2  

Re(ITo) = a / dz  z2 lm ds s-l [e-'9" - e-'] . 
lr - 1 1 2  

(2.12) 

Finally one finds some internal cancellation upon addition of this last term to 
equations (2.11) and the proper-time representation of the magnetized boson vacuum 
scalars are: 

( 2 . 1 3 ~ )  

(2.13b) 
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The above equations are valid representations for Y values greater than the first pair- 
production threshold of the particular scalar. Taking the case of Qb, this can be seen 
from the large s expansion of the first term in the integrand 

where g E p-'[1 + y ( i - a  2) ]  and to  ensure that the argument g + f is positive for all 
x then the minimum of this quantity must positive. This implies y > - { E o  + E o } ' .  
In the case of 7, the limit is 

and the appropriate condition is y > - { E o  + El}2, while the case of xb has a limit 

e-t+' (esz - cosh( fs)) (cosh( fs) - e-'=) / sinh3( fs) -+ -2e-'((9t'/2) (2 .14~)  

and therefore y > - { E o + E o ] 2 .  Similar considerations for the fermions leads to y > -4 
in the case of Qr, to  Y > - { E o  + E , } 2  in the case of P,,  and and to  Y > -{El + 81}2 
in the case of &. In all these equations and the following ones the same symbol for 
the energy level of both fermions and bosons is used, namely E,,  but it should be 
clear which is meant from the context. 

The proper-time integral formulation can be analytically continued throughout 
the complex Y plane except on a branch cut from the pair threshold to  -co. This 
continuation entails a rotation of integration contour from s = 0 -+ +CO to  any path 
between s = 0 -+ +io0 and s = 0 -+ -im. The complex integral form corresponding 
to a rotation of +7r/2 (and a change of variables s -+ is) is essentially identical in 
appearance to  the real form and only the result for Qb will be quoted here: 

1 +1/2 
dx x2 Am d s  [cosec( $s)e-itq - 

S 
(2.15) 

where 

cos( fs) - cos(sx) 
s sin( 4s) 

$ = 1 + Y ( +  - x2) + 2 

The precise contour is indented along semicircles of arbitrarily small radii centred 
around the poles of the integrand a t  s = s, = 27rn, where n = 1 , 2 , 3 , .  . ., in the lower 
half I m s  < 0 plane (there is no pole a t  s = 0 due to the cancellation with the counter 
term). Effectively the contour runs from s = 0 to  s = for some small positive c 
and this introduces a convergence factor e-tc@ to ensure the existence of the integral. 
However this form will find no particular application in the work presented here, and 
is unsuitable for numerical work. The final results for the boson scalars in equations 
(2.13a-c) can be compared to  the special case of the polarization tensor in a pure 
external magnetic field that was found in [BI75], and exact agreement is found by 
making the correspondences x -$ fs, v -+ 2x, p- lx  -+ s /p  and 2H/H0 -+ p. 
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3. Spectral represent at ion 

In this section the spectral or Landau sum representation of the boson scalars will be 
derived. The main usefulness of such a representation is in the interpretation of the 
individual terms and the approximations that  can be found from it. 

Considering Q b  first, the following unrenormalized equation for n33 is taken as 
the starting point: 

( 3 . 1 ~ )  

in contrast to  that in equation (2.2f).  Here the integrals M:,,, and N ,  defined to  be 

M,,,,) 2 = - J d z  J dt t-'e-'Qb - 2qf, J d z  x2 J dt e-'Qb 

m 

N~ = E N , .  ( 3 . l b )  
n=O 

The t integrals are formally divergent, at the lower limit o f t  = 0,  but one can take 
this limit as being small and finite in intermediate steps until it is set to  zero a t  the 
end. How this step in the renormalization process works here is that the two divergent 
integrals in the component can be combined to yield a finite integral, by using the 
sum identity, equation ( 2 . 8 ~ ) .  The tensor component is found to  be: 

By integrating the first term by parts, one finds a single term with a factor of a'. On 
the basis of the structure of the vacuum tensor one can make the identification of this 
term with Qb. The unrenormalized scalar found this way is then 

(3.3) 

The unregularized scalar P b  is most conveniently found from the U13 component 
directly (equation ( 2 . 1 ~ ) )  and is 

The remaining boson scalar is found in 
extracted from the IIzz component: 

J-112 

a similar way with the unregularized form 
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Renormalization in this representation proceeds in a slightly different way from that 
of the previous section, because the limit limp,o Q:,,n(2/P), for general 2, n and n/ 
is not known. This was a point noted by Sivak [SV85] but not resolved. However one 
does not need this, and instead proceeds to  take the limit of 2 --* 0 first because in the 
zero-field limit quantities only depend on an isotropic y -+ q2 - R 2 ,  then Y -+ 0 and 
finally P --* 0 in distinct steps. Having performed the first two limits one performs the 
zero field limit by utilizing the technique employed by [BK75, BK761. If F ( P n ,  P, x) is 
an arbitrary integrand of a 2-integral and a function of the combination /In, P alone 
and x ,  then one can recast this limit of the infinite sum over n as an integral thus: 

The final limit required for Qb is 

(3 .7)  

and the renormalized scalar is then 

It should be noted that the order of the summations is specific. Firstly the n/ 
sum is done and is convergent for all n ,  y and 2 because for large n' the Laguerre 
polynomials go as L; ' -"(z)  - (l+z)"/n! and thus the theta functions behave like 

of n'. For each n this partial sum is then 
the n summation becomes convergent, al- 

and the integrals are decreasing functions 
renormalized by the subtraction term and 
though weakly so. The subtraction term can be put into a form symmetrical in n and 
n' by noting that the index n is arbitrary and utilizing the sum identity ( 2 . 8 ~ )  once 
more. This yields the expression 

m 

and the order of summations is irrelevant. For example one can sum over n along the 
diagonal n'-n = v = constant lines, where v = 1 , 2 , 3 . .  ., and then sum over v ,  and 
this will yield the correct result. 
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The renormalized spectral form can also be developed directly from the renor- 
malized proper-time representation, and to illustrate the method Qf is taken as an 
example. The first calculation of these forms in the fermion case appeared in Shabad 
[SH75] where the unrenormalized scalars were displayed. The contact terms were not, 
explicitly shown. These representations have been found also by Sivak [SV85], who 
gave the most compact expressions, but they differ from the ones presented here in 
that his subtraction terms are not the zero-field limits. They are in fact just t.he Y + 0 
and z + 0 limits and he has to add on the finite field static and uniform renormalized 
scalar. Melrose [MR77] has also found them, but not simplified or reduced them in the 
same way as the other two authors. In the derivation here the factor e-‘P/sinh($s) is 
expanded, using the double Landau sum equation (2.8a), i.e. proceeding in the reverse 
manner to  that detailed in the previous section. The contact term is expressed as 

and expanded. The divergence of the s-integral as sL + 0,  where sL is the lower 
limit of the s-integral, is now transfered to the double infinite sum, and the s-integral 
performed. The final result is: 

(3.10) 

This contact term can also be symmetrized and the sum identity ( 2 . 8 ~ )  used to  perform 
a renormalization subtraction of each n ,  n’ integral term as in equation (3.9). Here 
Qf is the fermion equivalent of equation (2.7). 

To implement the zero-field limiting procedure for the scalar P b  it is necessary to  
integrate the unrenormalized expression, equation (3.4), by parts with respect to z 
and then it is found that the contact term is 

Therefore the renormalized expression for this scalar is 

(3.11) 

(3.12) 

The contact term for f i b  can be found from twice integrating by parts the bare 
term, equation (3.5), and the result of the limiting procedures is: 

(3.13) 
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The final result for the renormalized scalar is then 

- iP - '  In 

The simple symmetrization scheme that was applied to  the Q scalars is not a valid 
operation for the P or R scalars (either boson or fermion), and will lead to a finite but 
incorrect result. This is because the order of the infinite summations is important and 
cannot be interchanged without introducing modified contact terms and is ultimately 
due to  the fact that  they are not uniformly convergent sums in their own right. 

4. Dispersion-sum representation 

It is possible to  develop another representation of the polarization tensor which is 
valid throughout the complex y plane apart from, obviously, the pair threshold branch 
points. The beginnings of a derivation of this representation was sketched out in the 
appendix of Shabad's 1975 paper [SH75] but no explicit final results were displayed. 
In this section the derivation of the result for Qb will be given as an example, and this 
method can serve as a guide for the treatment of the other scalars. 

Following [SH75] one starts with the proper-time representation, equation (2.13a), 
and expands e-tq as a power series in t about t = 0: 

0 0 1  

e-tq = 0" n! [sinh($s)]-n 2 ( - 1 ) ( P + q ) n C  P B  "C e-SQ ( 4 . 1 )  
n=O p,q=O 

where Q = g - i ( p + q ) + z ( q - p ) + i n .  One separates the n = 0 term and combines it 
with the contact term, i.e. the n = 0 term is renormalized, and the other n 2 1 are 
not. After performing the s integration with care the expression for i& is then 

(4.2a) 
Here $(z) is the standard gamma-psi function and hb E g - i ( p + q )  + z ( q - p )  + f .  
In this way the fermion scalar Gf is 

03 
7r 

d z ( i - z 2 ) [ $ ( g ) + $ ( g + l ) ] -  x f  n.  c ( - l ) ( P t q ) " C  P P  " C  
n = l  p,q=O 

-Q - - g l n , ~ ? -  
CY f -  

r ( h f  +n+ 1) 
n!F(h,+l) 

dx ($ -x2)  

(4.2b) 
where h, g -  i ( p + q ) + z ( q - p ) .  A derivation of and full results for all the other 
boson and fermion scalars, in this representation, can be found in [WT89]. The above 
formulae are convergent expansions in a double sense: in one sense as an expansion in 
the perpendicular wavevector z ,  and also as a high field expansion, in p- ' .  
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5. Anti-Hermitian parts 

The anti-Hermitian parts of the vacuum tensor are exactly those corresponding to  
the imaginary parts of the scalars, as calculated from the components in equations 
(2 .2)  by the Landau procedure. From the optical theorem these are directly related to  
the inverse lifetimes of the modes supported by the magnetized vacuum. ’The inverse 
lifetime SZM for an  excitation mode M is not a Lorentz invariant but the product 
of the lifetime and frequency is. This product, calculated on the mass shell for the 
particular mode, is directly related to the anti-Hermitian part of the vacuum tensor, 
denoted by n, via the approximate relation 

In the  case of the three modes the Lorentz invariant rates are simply expressable in 
terms of the scalars: 

(1) 

(2) 
(3) 

Q%’ = -(y + z) Im(P)  
Q%’ = -yIm(Q) - zIm(P)  
nW3 = -yIm(P) - zIm(R)  . 

(5.2a) 
( 5 . 2 b )  
( 5 . 2 ~ )  

The  limitations of this approximation will be discussed a t  greater length in section 8, 
which treats the exact eigensolutions of the dispersion relations. 

The  condition tha t  a given term of the Landau sum, ( n ,  n’), contributes a non-zero 
value to  the anti-Hermitian part leads to a restriction on the permissible values of R 
and n’ (if any are possible a t  all) for a given Y and p,  with the following form: 

1 > a + a  

1 < la- 
(5.3a)  

( 5 . 3 b )  

where 1 5 -Pn/y ,  I‘ E -pn’/y  and I ,  E - ( l+  $ P ) / Y .  Shown in figure 1 are five 
distinct types of curves in the 1 against 1’ plane of the boundaries of these inequalities, 
which include the cases of lo < 0,  0 < I ,  < a and I ,  > i. The first case corresponds 
to Y > 0 and there is no intersection with the axes. In the second case Y < 0 and 
the boundary curve cuts the axes twice. Only in this case is there a region confined 
to the lower left-hand corner of the first quadrant of the 1-1’ plane which satisfies 
the pair production criteria of equation (5.3~). This criteria bounds the range of 
permissible Landau levels from above to only those that are kinematically possible in 
a pair creation process from a photon with ‘energy’ y .  In the last case the boundary 
curve intersects the axes once and there are only regions satisfying the second equation 
(5.36). The  second inequality is the kinematic condition for gyromagnetic ernission or 
absorption and is not present in the vacuum. 

Because the sum over Landau levels in the imaginary parts has a finite cut-off 
and  the zero-field and wavevector-frequency limits all vanish, they do not need to be 
regularized. The  final result for the imaginary parts of the scalars is: 

(5.4a) 
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= -114 
= O  
= 118 
I 114 
= 112 

I , , , , , . , . , , . . , ,  . , , ,  , 1 
- 0 5  d 0 5  1 0  1 5  2 0  2 5  

i ’  

Figure 1. Plot of the regions in the Landau level plane 1 against 1’ that satisfy the 
pair creation or gyromagnetic absorption energy conditions for given values of field 
strength, p, and photon ‘energy’ parameter Y .  

n,n‘=O 

(5.4c) 

where it is defined that y, , , ,  E {En’ + 5,)’. 
The boson inverse lifetimes are found easily from equations (5.4) and are: 

and 

(5,5b) 

The inverse lifetime for the boson mode 2, Xi, has no singularities anywhere, for all 
Y and 2, in contrast to  any of the two fermion inverse lifetimes. This arises from the 
constraints of angular momentum conservation of a process in which a spin-1 photon 
mode decays via pair creation of a 0-spin boson and antiboson pair. However, in 
a more exact calculation of the inverse lifetime from the dispersion relations all the 
fermion and boson lifetimes will have a finite maxima near the thresholds, and will 
not diverge (see discussion in [SH75, SH841). 

6. Static and uniform limits 

In the investigation of the physical properties of the magnetized vacuum, it is instruc- 
tive to  begin with the simplest limit, the static and uniform response of the vacuum 
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to  a constant and homogeneous perturbing electromagnetic field. This limit can be 
most easily found from the dispersion sum representation, as given in equations (4.2u, 
b) etc, and the final results are displayed as follows: 

-& {In/?+ g(z+ p-',} ( 6 . 1 ~ )  127r 

(6.lb) 

( 6 . 1 ~ )  

Landau sum representations for the static and uniform boson scalars can be found 
and these can be compared with the fermion equivalents in [BK75]. They can be 
found from the Z , Y  + 0 limits of expressions (3.8), (3.12) and (3.14) and the results 
displayed below can be shown to be exactly equal to  those given in equations (6.la-c). 
These are found to  be 

and 

as well as 

(6.26) 

Simple approximations for the stat.ic and uniform limits exist in the low-field and 
high-field regions which expresses their behaviour in these regions in a simple manner. 
The asymptotic expansions for small fields P are 

( 6 . 3 ~ )  

and 

(6.3b) 
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where the I i  are rational numbers defined by 

+1/2  
I k  3 I l iz  d z z j B k ( z )  

and the Bj(z) are the Bernoulli polynomials [GD80] with the shorthand that Bj = 

High field approximations to  all the scalars can be found in the Landau sum 
representations in that they converge more rapidly the greater the field strength is, 
but specific expansions in the parameter p-' are more desirable. The high field 
expansion of Qb is simply found from the Taylor expansion of the psi function (see 
Abramowitz and Stegun [AB65], equation 6.4 .4)  as 

Bj (0). 

= 1nP - 1.963510026 + 4.934802200@-'  + O(p-') ( 6 . 4 ~ )  

which is a convergent sum when p > 2,  and that the leading term is logarithmic. The 
corresponding expansion for Pb is 

+ 4 5 ( -1)k-1(k-2)  k (2  -' - 1) P - k < ( k - l )  
k = 3  k(k-1)  

= 0.3 In 4 - 0.600 784 782 9 + 1.386 294361 1 p-' - 2.0 p-2 + O(/!?-3) 
(6.4b) 

also when /!? > 2.  
The exact and full dependence of the scalars on the magnetic field strength is 

shown in figure 2.  A few salient points about the behaviour of the scalars with respect 
to the magnetic field strength should be noted from figure 2 as compared with fermion 
results in [BK75]. 

1 .  All relevant physical quantities depend on Q and P only and R is not indepen- 
dent. 

2.  All are negative for all field strengths, except for Qf .  
3.  In the boson case the order lRbl > lPbl > IQb[ is maintained for all field 

In this case, for low field 

4 .  The fermion scalars are generally, for low field strengths, some factors larger in 

strengths, but the order changes for the fermion ones. 
strengths lRfl > Qf > lPfl but for high fields Qf > lRfl > lPfl. 

magnitude than the corresponding boson scalars and are exactly 
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Magnet ic F'e d p 

Figure 2. The static and uniform scalars, IQbl, lpb l ,  and 
field strength 0. 

against magnetic 

5. Qf rises linearly with increasing field strength in contrast to the other fermion 
scalars and all the boson scalars, including IQ,,/, which go as In ,8. This point was 
made originally in [BK75] with respect to the fermion scalars. 

The  explanation for points four and five lies with a consideration of the kinematics 
of virtual processes and with the conservation constraints = 8' and PI, = Pll' for 
transitions from one state (unprimed) to another (primed). In the boson case these 
constraints imply that n = n' whereas in the sp in- i  case it implies 2n + 1 - u = 
2n' + 1 - u' where u is the electron spin. Given that the spin is either plus or 
minus unity then Au = 0 , + 2 , - 2  and thus one has An = 0,+1,-1 respectively. 
As the magnetic field strength increases then the Landau energy spacing accordingly 
increases and the contribution of the energy changing transitions declines, bu t  the 
spin-flip transitions do not entail any energy change and so dominate in the fermion 
scalars. 

The  electric and magnetic polarizabilities (see [WT88] for definitions) can be de- 
composed into longitudinal and transverse parts like 

2.' 'I = &I$ + zllI;; A . .  'I = ALIA 'I + A l l I ~ ~  (6.6) 

where 1:; = B i B j / B 2  and I$ = hij  - 1;;. In the either case the longitudinal and 
transverse components are then Z,, = 1 + Q ,  2, = 1 + P ,  A , ,  = 1 + P + ?aP/a? 
and Al = 1 + P .  Point number two implies tha t  for fermions 6E,,, is reduced, and 
to a greater extent, parallel t o  the external field (dielectric) and is enhanced, to a 
lesser extent, perpendicular to the field (para-electric). The  magnetic perturbations, 
hB,,,, are enhanced in all directions, but more so in the parallel direction (param- 
agnetic). Again this is not new. In contrast the electric field perturbations in the 
boson vacuum are enhanced in all directions but more so in the perpendicular direc- 
tion (para-electric). The  magnetic perturbations are also enhanced in all directions 
(paramagnetic) and more so in the parallel direction. 

The  explanation for the occurence of dielectric behaviour for the fermion vacuum, 
in the direction of the external field, as opposed to para-electric screening for the 
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boson case lies in a consideration of vacuum fluctuations. The relevant scalars in this 
phenomena are Qb and Qf which have the following Landau sum representations: 

(6.7a) 

(6.7b) 

As can be seen from these equations the fermion vacuum fluctuations involve contri- 
butions from both Landau levels n and n + 1, whereas the boson case only involves 
one level a t  n .  This level is situated exactly midway between the two fermion levels 
because of the f term in Qb, reflecting the zerc-point contribution. It should be noted 
that the renormalizing term is identical in both cases. Now it is generally true that 

for all real, positive z. Thus the fermion scalar is always positive. It is also generally 
true that 

for all real z greater than +f. The boson scalar is then always negative. Thus it can 
be seen that the difference arises from the two distinct types of eigenvalue spectra and 
spin degeneracies the two particles possess. 

The static longitudinal dielectric function is simply given by 

& , , ( q , W  = 0) = 1 + q-* ( d p  + qf,Q) (6 .8)  

for either the boson or fermion cases. In order to study the effect of the external 
magnetic field on the screened electrostatic potential of a test charge it is useful to  
calculate the high field limits, because the greatest difference with a bare Coloumb 
form is expected in this regime. The appropriate expressions for the scalars are then 
found from equations (4 .2)  and others and by considering only terms up to  orders of 
4-' one has 

(6.9) 

The screened potential, as a function of the parallel distance r and the perpendicular 
distance p from the central charge, is found from the static dielectric function in the 
usual way (see [WT88]). The screening due to  the boson vacum in the high-field limit 
is then 

(6.10) 



Polarization of the magnetized scalar and spinor vacua 5277 

which shows an overall enhancement as well as an anisotropy relative to the field 
direction. The constants involved here are 

~ , ~ = l + - ( - l n p + 7 + 2 I n 2 )  (6.1 la )  CY 

12iT 

(6.11b) 

and for all reasonable field strengths these will be positive and y = -$( 1) also. 
In the fermion case the dielectric function has a quite different form: 

Q CY 
- - 3iT In P + W(5d +2Yq;) + o(p-’) (6.12) 

where the $ functions have been expanded in a descending series in p. The leading- 
order term is linear in the field strength with a different dependence on the wavenum- 
ber. As a consequence at  large radial distances from the central charge s, the resulting 
potential is an anisotropic Coloumb type 

(6.134 

while a t  small distances one has a finite-range isotropic potential 

v,’ N s - le-(ap/x)”~S (6.136) 

7. Analytic structure of scalars 

The dependence of the scalars on z, for real z > 0, with y fixed is not necessarily a 
monotonic one but for sufficiently large z the magnitude of the scalar will decrease 
exponentially with increasing 2. The basic singular behaviour of the scalars on Y for 
a given, arbitrary value of z can be found from the dispersion sum representations by 
examining the argument of the psi functions, which can be written most generally as 

P-’ [l+Y($--12)] - $(p+q+a) + z(q-p+b) + n+; (7.1) 

with integers a and b appropriate to the particular scalar. The pair threshold values 
of Y are then given by one of the roots t o  an additional quadratic equation which 
expresses the condition that the above quadratic in -1, equation (7.1), has coincident 
real roots. In summary we have the following. 

1. Re(?&) has inverse square-root singularities on the upper sides of the pair 
creation thresholds, y = - {ei + E j }  for i # j 1 0 and z # 0, but only cusps a t  
Y = - {gi + E i } l ,  i 2 0 for all z (including z = 0). Approaching the threshold from 
above Re@,,) - $00. Im@,) has inverse square-root singularities on the lower sides 

2 
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of the above thresholds, under the same conditions, and cusps a t  the same points. 
The other difference is that  the cusps are downwards pointing. 

2. Re(Gf) has inverse square-root singularities on the upper sides of the thresholds 
y = - { E ,  + E j }  for i,j 2 0 when z # 0, but only ones a t  y = - { E ,  + E,}' for i 2 0 
if z = 0. Re(Gf) + +CO as the threshold is approached from above. Im(Gf) has 
inverse square-root singularities on the lower sides of the same thresholds, and under 
the same conditions. Again I m ( a f )  + $00 on the lower side of the thresholds. Here it 
is understood that  the appropriate energy formula applies in the two spin cases even 
though the same symbol has been used for both. 

For the exact behaviour of the other boson and fermion scalars the reader is referred 
t o  [WT89]. The  dependence of both the real and imaginary parts of two of the scalars, 
Qb and Qr, on both the kinematic invariants, Y and z, is illustrated in figures 3 and 
4 respectively. 

2 

8.  Eigenmodes 

The exact solutions to  the dispersion equations (1.7) are the full complex solutions 
y, + iy, as functions of 2, + i2, with the complete Hermitian and anti-Hermitian 
parts of the scalars included, i.e. S, + is, for general scalars S. The scalars have 
real and imaginary parks even if the photon parameters Y and 2 are purely real. The 
imaginary part of Y comes from the imaginary part of the frequency Q = Q, - i r  where 
I' > 0 is half the exact inverse lifetime and the real part is the physical propagation 
frequency. The imaginary part of z is found [SH75] to  have many solutions (an infinite 
number) and is related to the principal internal quantum number of the quasibound 
positronium state, while the real part takes the standard interpretation. What  is 
generally assumed is that the damping time constant is much smaller than the real 
part and that z is purely real. The consequence of this is that  equations (5.1) and 
(5.2) holds true for the inverse lifetime and the approximate real solutions are given 
by equations (1.7) with only the Hermitian parts of the scalars involved. 

Because the scalars have two complex valued branches there are two different sets 
of dispersion relations, and the set corresponding to  the real and imaginary parts given 
in this paper will be denoted the physical branch. The second branch is always related 
to  the first by 

(8.1) S ( y  - io) - S(y + io) = 2iImS 

and close t o  the pair production thresholds the choice of the sheet in the dispersion 
relations corresponds to  the choice of a different sign of the square root in the momen- 
tum integrals, in the Landau sum representation. In this section only the existence 
and types of real solutions to the dispersion relations, equations (1.7), on the princi- 
pal branch will be discussed. The distinct fermion and boson modes described by the 
dispersion relations of modes 1, 2,  and 3 in equations (1.7) are hereafter denoted by 
the symbols F1, F2, F3 and B1, B2, B3 respectively. 

For all p (less than the ultrastrong field strength - e2*Ia) p b  and Pf are never less 
than -1 so that  no solutions on the principal branch exist for mode 1 in the boson 
or fermion case as can be seen from the following argument: they have local, finite 
minima on the lower side of the pair thresholds a t  z = 0 and it would be at  these 
points where P,, or Pf would equal -1 first, for some field strength and particular 
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Figure 3. (a) The real part of Q b  against Y and z for p = 1.0. ( b )  The imaginary 
part of Qb against Y and 2 for p = 1.0. 

threshold, if it were possible. However the magnitude of the P scalars at these points 
are only weakly increasing with field strength and the Landau level number of the 
threshold. This conclusion only holds rigorously at z = 0. 

The situation for the modes 2 and 3 can be conveniently discussed by looking 
at  the approximate dispersion solutions in the neighbourhood of the pair production 
thresholds, as was done in the fermion case in [SH75]. As mentioned earlier it was 
first noted in this paper and [SH72] that the dispersion solutions for modes 2 and 3 
in the fermion case departed from the lightcone trajectory and flattened out along 
the upper edge of sets of pair production thresholds. This was established by the 
discovery of these approximate solutions and an attempt at painting a global picture 
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Figure 4. ( a )  The real part of Qf against Y and z for p = 1.0. ( b )  The imaginary 
part of Qf against Y and z for p = 1.0. 

of the modes was made by patching the results at the thresholds together. Near a 
particular threshold, say y,,,,, only that term in the Landau sum with the appropriate 
momentum integral need be retained as this will be the dominant contribution (the 
contact term for this (n ,n ’ )  pair is also dropped). Also taking the lowest order term in 
an expansion of the momentum integral about y - Y,,,, = 0 yields an inverse square 
root dependence on y. For example the mode F2 near the highest threshold (0, 0), is 
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governed by the equation 

Using the above approximations for mode B2 one finds a remarkable cancellation 
of the singular terms between Gb and Pb so that the dispersion equation is 

y + Z + (YO(1) = o  (8.3) 

and thus there is only slight deviation from the lightcone, for all values of n and n’. 
Clearly this mode, which is of a mixed transverse and longitudinal nature, is virtually a 
pure photon eigenstate and experiences no mixing with bound boson-antiboson pairs. 
The situation with regard to mode B3 is different, however, and one can verify that 
the approximate relation is 

This has a basically similar set of solutions as mode F2 except in one interesting regard. 
The factor O i l , ,  in equation (8.7) can null for certain real, non-negative values of z 
and thus the solution will cross (or touch) the pair threshold exactly a t  this value of 
transverse wavenumber. 

Some of the solutions to  the dispersion relations of the magnetized boson and 
fermion vacua have been numerically found to illustrate the points made in the pre- 
ceeding subsection and elsewhere. Some of these are shown in figures 5-7. The modes 
taken are B3, F2 and F3 in the regions of the two highest thresholds. The B2 mode is 
absent because the deviations from the free-space dispersion solutions are quite small 
everywhere. It should be reported that the [CV74, BK76] numerical solution of the 
‘longitudinal massive photon’ has been confirmed by the author and the dependence 
of the cut-off frequency of this mode (at q , ,  = 0) on the magnetic field strength is 
correct as they have found. However, there is no point in presenting them again. 

83 B =  10‘ 

2360 2380  2 L O O  2 4 2 0  2 4 4 0  
z 

Figure 5. Dispersion solutions for mode B3 above the (0,O) threshold for 0 = 10’ 
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Figure 6. Dispersion solutions for mode F2 above the (0 ,O)  threshold for P = 10' 
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Figure 7. Dispersion solutions for mode F3 above the (0 ,O)  threshold for p = 10' 

9. Conclusion 

In this paper the polarization tensor for the magnetized bosonic vacuum, calculated 
in the random phase approximation to the equations of motion of current fluctua- 
tions in scalar quantum electrodynamics, has been studied. This result has been 
presented in three different representation forms: the proper-time, the spectral and 
the dispersion sum forms. The imaginary parts have also been explicitly given along 
with the approximate inverse lifetimes. The static and uniform properties of both 
vacua have been compared and it is found that the bosonic vacuum acts as a para- 
electric medium and the parallel electric polarizability only has a logarithmic large 
field growth. The  behaviour of both the bosonic and fermion scalars of the photon 
momenta is extensively explored numerically where it is found that  the boson scalar 
Qb does not exhibit any of the inverse square root singularities where the creation of 
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virtual boson-antiboson pairs is first allowed. A consequence of these two results is 
that the ‘massive longitudinal photon’ is not supported in the bosonic vacuum state. 

Furthermore analytic and numerical solution of the fermion and boson dispersion 
relations confirms the earlier investigations in the former case and another differ- 
ence with the latter. In the bosonic vacuum only one purely transverse electromag- 
netic mode (mode 3) acquires mass through mixing with quasibound boson-antiboson 
pairs and becomes channelled along the external magnetic field lines. The other 
mode, whose electric polarization vector can acquire some components parallel to  
the wavevector of propagation, (mode 2) only weakly departs from the free-space 
dispersion law and is not deflected at  t,he pair production thresholds. 
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